Self-Organizing Incremental Associative Memory-Based Robot Navigation

نویسندگان

  • Sirinart Tangruamsub
  • Aram Kawewong
  • Manabu Tsuboyama
  • Osamu Hasegawa
چکیده

This paper presents a new incremental approach for robot navigation using associative memory. We defined the association as node→action→node where node is the robot position and action is the action of a robot (i.e., orientation, direction). These associations are used for path planning by retrieving a sequence of path fragments (in form of (node→action→node) → (node→action→node) →· · ·) starting from the start point to the goal. To learn such associations, we applied the associative memory using Self-Organizing Incremental Associative Memory (SOIAM). Our proposed method comprises three layers: input layer, memory layer and associative layer. The input layer is used for collecting input observations. The memory layer clusters the obtained observations into a set of topological nodes incrementally. In the associative layer, the associative memory is used as the topological map where nodes are associated with actions. The advantages of our method are that 1) it does not need prior knowledge, 2) it can process data in continuous space which is very important for real-world robot navigation and 3) it can learn in an incremental unsupervised manner. Experiments are done with a realistic robot simulator: Webots. We divided the experiments into 4 parts to show the ability of creating a map, incremental learning and symbol-based recognition. Results show that our method offers a 90% success rate for reaching the goal. key words: navigation, associative memory, neural networks

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reasoning on the Self-Organizing Incremental Associative Memory for Online Robot Path Planning

Robot path-planning is one of the important issues in robotic navigation. This paper presents a novel robot path-planning approach based on the associative memory using Self-Organizing Incremental Neural Networks (SOINN). By the proposed method, an environment is first autonomously divided into a set of path-fragments by junctions. Each fragment is represented by a sequence of preliminarily gen...

متن کامل

A general associative memory based on self-organizing incremental neural network

This paper proposes a general associative memory (GAM) system that combines the functions of other typical associative memory (AM) systems. The GAM is a network consisting of three layers: an input layer, a memory layer, and an associative layer. The input layer accepts key vectors, response vectors, and the associative relationships between these vectors. The memory layer stores the input vect...

متن کامل

SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation System

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and are released at the appropriate times, during aut...

متن کامل

Modeling and Simulation of Elementary Robot Behaviors using Associative Memories

Today, there are several drawbacks that impede the necessary and much needed use of robot learning techniques in real applications. First, the time needed to achieve the synthesis of any behavior is prohibitive. Second, the robot behavior during the learning phase is – by definition – bad, it may even be dangerous. Third, except within the lazy learning approach, a new behavior implies a new le...

متن کامل

A learning and memory architecture for robot companions based on incremental associative learning

We present a learning and memory architecture that allows a robot companion to incrementally learn and associate data from different sensors and actuators. We use a topology learning algorithm that clusters the received inputs into discrete categories. On top of these clusters we apply associative learning methods to store co-occurrence relationships in an associative network. We evaluated the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 95-D  شماره 

صفحات  -

تاریخ انتشار 2012